## antrova

. . . . . . . . . . . . . . . . . . .

...........

............ ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ ..... .......... ........... ............ . . . . . . . . . . . . . . . . . . . ..........

\*\*\*\*\*\*\*\*\*\*\*\* ....... ....... \*\*\*\*\*\*\* ........ ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... ....... ........ ....... ....... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . . . . . . . . . . . . . . . . . . . . ....... ........ \*\*\*\*\*\*\* ....... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... .......

.....

. . . .



# A new Pressure Wave Supercharger concept for less emissions and more efficiency





## How does a Pressure Wave Supercharger work and why use it?



Comprex<sup>™</sup>



### Pros and Contras of the PWS:

### **Pros:**

- Very fast boost pressure response
- High boost pressure at low engine speed
- Its electric driver is used only for synchronisation of the charger compared to the engine speed and can be used for power recovery as well.
- Live time lubricated bearings, no impact on engine oil no blow by
- No speed reserve necessary, the PWS compensates every operational height
- The PWS already absorbs the engine noise. Therefore, only a very simple exhaust system without damper is needed



### Pros and Contras of the PWS

- Very high compression efficiency, possible at low engine speed
- No surge limits as usual by using a turbo compressor
- Low backpressure of the EGS, allows reduction of fuel consumption, see following example
- The catalytic converter can be arranged between the engine and the PWS which leads to a quick light off and much less emissions.
- High EGR rates are easy to represent.
- Very good suitable for Downsizing



### Example back pressure in EGS:





### Pros and Contras of the PWS

### **Contras:**

- Need for small back pressure on the low pressure side requires larger exhaust system cross sections. Also the same on the air intake side of the PWS.
- Cold start behavior of the PWS, more difficult to master in gasoline engines and gas engines. Thanks to the new concept significantly improved.
- Matching is more complicated, but can now be done in advance with simulation software such as GT Suite, AVL BOOST.



### Example PWS rotor:





### Function of PWS:



Flow and gas dynamics



### Function of PWS:





### Function of PWS:





### Function of PWS:



Highest Temperature in Red



### Potential of PWS:

### Effektive Leistung EngineCrankTrain part Engine



1.2 Liter Engine with 180 HP



an on our difficulties of the control of the contro

### Potential of PWS:

### Effektives Drehmoment EngineCrankTrain part Engine



1.2 Liter Engine with 295 Nm



### Pressure Wave Supercharger Concepts





### Old Concept of PWS:





1. Watercooled Exhaust Gas Casing







Watercooled gas housing



Cooling of sensitive parts!

Aluminium vs. High speed flow with 1000° C designed by Antrova AG





Watercooled gas housing



2. Splitted Rotor







Splitted Rotor





Splitted Rotor





Splitted Rotor



3. Cycle switching







Cycle switching





Cycle switching



Impact of Cycle switching



Cycle switching



. . . . . . . . . .

::::::::

### New Concept of PWS:

|   | Concept                                    | old | new | Rating new concept |
|---|--------------------------------------------|-----|-----|--------------------|
| 1 | Water cooling                              | no  | yes | +++                |
| 2 | Cycle shift                                | no  | yes | ++                 |
| 3 | Split rotor                                | no  | yes | ++                 |
| 4 | Capsuled bearings                          | no  | yes | ++                 |
| 5 | Aluminum hot gas casing without nickel     | no  | yes | +                  |
| 6 | Edge shift                                 | yes | no  | ++                 |
| 7 | Casing geometry influenced by temperatures | yes | no  | +++                |
| 8 | Electric driver                            | yes | yes | ++                 |
| 9 | Small speed variation                      | no  | yes | ++                 |

Historia i Historia



### Theories are nice but what about Testing real hardware?





### Hot gas Testing activities





### Hot gas Testing activities



- Important for representative measurements is that the PWS creates the air for the hot gas entry by its own! The high pressure loop must be closed.
- Due to the fact that the turbocharger test stands cannot handle this for the time being a **hot gas heat exchanger** was used together with a Roots Blower to create a flow from charge air (m2) connection to hot gas inlet connection (m3).
- m3=m2+mfuel! Mfuel was represented by some additional air blown in to the high pressure circuit.



### Hot gas Testing activities



Test stand in Karlsruhe





### Hot gas Testing activities



- We found good results and one interesting should be mentioned here.
- Concerning the splitted Rotor two measurement where made, one with a larger gap and one with a nearly closed rotor.
- Using only a lower temperature at hot gas inlet and a lower flow to make the system more sensible for a splitted rotor the difference between the two measured charge air pressures was only 0.036 bar abs.
- That proves the theory that the system is working in spite of a gap in between the Rotor.
- For more details see script



### EngineTesting activities





### EngineTesting activities

- Concerning the engine measurements there was first a petrol engine and later gas engine tested.
- On both engines the typical behaviour of the PWS could be found.
- Concerning the important question if the cold System of Engine and PWS is able to start without edge shift and with one open Cycle instead, we found a positive answer.
- Cold start works and proves the simulation that has shown a better performance using cycle switching instead of edge shift during engine start.
- With the gas engine a complete engine map was measured.
   Unfortunately the results cannot be presented this time.



### See more?

### Come to the Exhibition Disp. 9





Many thanks for your attention!

## antrova

. . . . . . . . . . . . . . . . . . .

...........

............ ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ ..... .......... ........... ............ . . . . . . . . . . . . . . . . . . . ..........

\*\*\*\*\*\*\*\*\*\*\*\* ....... ....... \*\*\*\*\*\*\* ........ ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... ....... ........ ....... ....... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . . . . . . . . . . . . . . . . . . . . ....... ........ \*\*\*\*\*\*\* ....... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... .......

.....

. . . .